close
Привет! Этот проект был создан для того, чтобы помочь тебе подготовится к ЕГЭ|ОГЭ. У нас более 1000 заданий с подробным решением, сервис запомянающий твои ответы и удивительная система тестирования. Обо всем по порядку расскажу тебе после быстрой регистрации.
Присоединиться к ExamMe
ОГЭ по Математике
Задание 1. Числа и вычисления (0/10)
Задание 2. Числовые неравенства, координатная прямая (0/10)
Задание 3. Числа, вычисления и алгебраические выражения (0/10)
Задание 4. Уравнения и неравенства (0/10)
Задание 5. Чтение графиков функций (0/10)
Задание 6. Арифметические и геометрические прогрессии (0/10)
Задание 7. Алгебраические выражения (0/10)
Задание 8. Уравнения, не­ра­вен­ства и их системы (0/10)
Задание 9. Треугольники, четырёхугольники, многоугольники и их элементы (0/10)
Задание 10. Окружность, круг и их элементы (0/10)
Задание 11. Площади фигур (0/10)
Задание 12. Фигуры на квадратной решётке (0/10)
Задание 13. Верные и неверные геометрические высказывания (0/10)
Задание 14. Анализ диаграмм, таблиц, графиков (0/10)
Задание 15. Анализ диаграмм, таблиц, графиков (0/10)
Задание 16. Простейшие текстовые задачи (0/10)
Задание 17. Практические задачи по геометрии (0/10)
Задание 18. Анализ диаграмм (0/10)
Задание 19. Статистика и вероятности (0/10)
Задание 20. Расчеты по формулам (0/10)
Задание 21. Алгебраические выражения, уравнения, неравенства и их системы (0/10)
Задание 22. Текстовые задачи (0/10)
Задание 23. Функции и их свойства. Графики функций (0/10)
Задание 24. Геометрическая задача на вычисление (0/10)
Задание 25. Геометрическая задача на доказательство (0/10)
Задание 26. Геометрическая задача повышенной сложности (0/10)
Начать проверочный тест

В треугольнике $ABC$ известны длины...

Задание:

В треугольнике $ABC$ известны длины сторон $AB=60$, $AC=80$, точка $O$-центр окружности, описанной около треугольника $ABC$. Прямая $BD$, перпендикулярная прямой $AO$, пересекает $AC$ в точке $D$. Найдите $CD$.

Решение:

Пусть продолжение отрезка $BD$ за точку $D$ пересекает окружность, описанную около треугольника $ABC$ в точке $P$(см. рис.). Тогда хорда $BP$ перпендикулярна радиусу $OA$ этой окружности. Значит, точка $A$ - середина дуги $BP$, не содержащей вершину $C$. Отсюда следует, что $\angle ABD=\angle ABP=\angle ACB$ (как вписанные углы, опирающиеся на равные дуги). Поэтому треугольники $ABD$ и $ACB$ подобны по двум углам (угол $A$ - общий).

Следовательно, $\frac{AD}{AB}=\frac{AB}{AC}$,

откуда $AD=\frac{AB^{2}}{AC}=45$ и $CD=AC-AD=80-45=35$.

Ответ: $35$.

Задание добавил(а)

Редактор проекта ExamMe

О задание:

Источник условия: Книга: ОГЭ 2017. Математика. 3 модуля. Типовые тестовые задания. Под ред. Ященко И.В.
Источник решения: Книга: ОГЭ 2017. Математика. 3 модуля. Типовые тестовые задания. Под ред. Ященко И.В.

Обсуждения

Только зарегистрированные пользователи могут оставлять комментарии.
Написать комментарий