Задача №5.83
Условие
На рис. 5.22 дана кривая Корню. Эта кривая позволяет методом векторного сложения колебаний определить амплитуду светового колебания, возбуждаемого в точке наблюдения P различными участками волновой поверхности, находящейся на расстоянии b от точки P (рис. 5.23). Волновая поверхность разбивается на перпендикулярные к проведенной через точку P оси x бесконечно длинные элементарные зоны dS ширины dx. Амплитуда dA, порождаемая зоной dS, определяется элементом dl кривой Корню (|dl|∼dx). Отсчитанное вдоль кривой расстояние этого элемента от начала координат характеризуется значением безразмерного параметра v. Числа, проставленные на кривой, означают значения этого параметра. Соответствие между значением v (определяющим положение точки на кривой Корню) и координатой x (определяющей положение зоны dS относительно точки P) в случае плоской волны устанавливается соотношениемv = x √(2/(bλ))
(λ — длина волны).
Решение
☆
Добавить в избранное
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.28
1.29
1.30
1.31
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.44
1.47
1.48
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.89
1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.99
1.100
1.101
1.102
1.103
1.104
1.105
1.106
1.107
1.108
1.114
1.115
1.116
1.117
1.118
1.119
1.122
1.123
1.124
1.125
1.126
1.127
1.137
1.139
1.141
1.147
1.148
1.149
1.150
1.152
1.153
1.154
1.155
1.160
1.165
1.168
1.170
1.180
1.185
1.187
1.189
1.190
1.191
1.192
1.195
1.196
1.198
1.214
1.215
1.218
1.219
1.220
1.221
1.222
1.223
1.237
1.243
1.252
1.256
1.259
1.260
1.267
1.271
1.273
1.275
1.276
1.277
1.278
1.280
1.281
1.283
1.284
1.285
1.287
1.288
1.289
1.291
1.292
1.293
1.294
1.298
1.305
1.318
1.320
1.322
1.328
1.329
1.333
1.341
1.343
1.345
2.6
2.9
2.15
2.23
2.25
2.31
2.33
2.41
2.42
2.43
2.44
2.45
2.56
2.63
2.66
2.68
2.69
2.70
2.71
2.72
2.77
2.78
2.80
2.83
2.84
2.85
2.87
2.88
2.93
2.95
2.96
2.97
2.99
2.109
2.122
2.126
2.135
2.136
2.137
2.138
2.140
2.154
2.157
2.159
2.162
2.165
2.166
2.168
2.169
2.176
2.180
2.186
2.188
2.189
2.190
2.192
2.198
2.199
2.200
2.208
3.3
3.5
3.6
3.9
3.12
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.23
3.27
3.28
3.30
3.36
3.38
3.40
3.41
3.42
3.44
3.45
3.52
3.53
3.55
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.69
3.70
3.71
3.77
3.78
3.79
3.82
3.84
3.85
3.88
3.97
3.104
3.105
3.106
3.109
3.114
3.117
3.124
3.127
3.128
3.131
3.141
3.143
3.144
3.145
3.147
3.149
3.157
3.159
3.161
3.163
3.164
3.168
3.169
3.171
3.175
3.176
3.178
3.179
3.180
3.183
3.184
3.185
3.186
3.187
3.189
3.190
3.191
3.192
3.193
3.196
3.197
3.198
3.199
3.201
3.202
3.203
3.206
3.208
3.209
3.210
3.213
3.214
3.215
3.216
3.225
3.234
3.240
3.242
3.244
3.249
4.5
4.12
4.15
4.17
4.25
4.29
4.34
4.39
4.42
4.49
4.51
4.52
4.55
4.56
4.57
4.58
4.60
4.61
5.3
5.11
5.18
5.31
5.34
5.35
5.36
5.38
5.39
5.44
5.45
5.46
5.47
5.48
5.56
5.59
5.63
5.65
5.67
5.69
5.70
5.72
5.78
5.83
5.86
5.93
5.100
5.108
5.111
5.120
5.122
5.124
5.125
5.129
5.136
5.138
5.145
5.150
5.152
5.154
5.155
5.158
5.159
5.163
5.166
5.171
6.3
6.8
6.10
6.15
6.19
6.21
6.22
6.24
6.32
6.36
6.44
6.45
6.49
6.55
6.60
6.62
6.63
6.67
6.68
6.72
6.75
6.80
6.81
6.82
6.86
6.87
6.90
6.92
6.93
6.95
6.96
6.97
6.98
6.99
6.102
6.103
6.104
6.105
6.107
6.108
6.111
6.114
6.117
6.118
6.120
6.121
6.123
6.125
6.126
6.127
6.128
6.129
6.135
6.136
6.142
6.144
6.146
6.147
6.149
6.175
6.184
6.199
6.200
6.201
6.202